
More AnyLogic & Java
Events

Java Types, and Enums

Nathaniel Osgood

CMPT 858

March 15, 2011

Reminder: Rates & Events

• Rates and Timeouts are associated with types
of events in AnyLogic

• Events can also be declared explicitly from the
pallette
– Dynamic events can have multiple instances

• Each instance can be scheduled at the same time

• The instances disappear after event firing

– Regular (static) events can be rescheduled,
enabled/disabled, but can only have one
scheduled firing at a time

• There are some subtleties with events

Built-In Events

• In addition to handling occurrence of explicit events,
models automatically support “catching” certain
“built-in” types of events

• To handle these events, code is inserted into certain
handler areas for each of different sorts of classes

Example: Built-In Events (Agent 1)

“Handler”: Code is executed when the
specified event (e.g., arrival at a
destination, message arrival) occurs.

Example: Built-In Events (Agent 2)

Example: Built-In Events (Main)

Types in Java

• Types tell you the class of values from which a
variable is drawn

• In Java we specify types for

– Parameters

– Variables

– Return values

– Class Fields

• Typically, we encode information described by
elements of one or more different types

Types & Legal Operations

• For a given type, only certain “operators” can be
used e.g.

– e.g. a double precision value can be divided,
multiplied, turned into a String etc.

– A boolean can be tested for truthhood, turned into a
String, etc.

– A (reference to a) string can be used to

• Extract prefixes or suffixes, find the length, concatenated,
etc.

– An enum’s values can be turned turned into a String,
converted to integer, etc.

Java Primitive Types

• These are built-in to the Java language

• Primitive types in Java are the following
– boolean

– double

– short (small integer)

– int

– char

– byte

– long

– float

Non-Primitive Types

• Most types we used are not primitive types

• These are defined either

– In our code

– In the standard Java libraries

Why Types?
• Like specifying dimensions for an object (e.g.

L, L3/T), specifying types lets us

– Know what we’re dealing with (so we know what
to do with it)

– Avoid making a silly mistake

• e.g. attempting to divide a number by a (reference to) a
Person

• Absent types, it is likely that these mistakes wouldn’t be
identified until runtime
– If we don’t happen to test that portion of the program, we

won’t be aware of the error

• With types, we can discover these errors when we are
building the program -- during our “Build”

Type Coercion (“Casting”): Why

• Sometimes we have something that is a
member of one type, but that can be logically
converted to another type

• Examples:
– We have a double-precision value and we wish to

convert it instead to an integer (by dropping
fractional component)

– We have an integer (or a double, char, boolean,
etc.) and wish to convert it to a string

– (Subtyping) We have an ActiveObject that we
know is a Person and wish to treat it as a Person

Type Coercion (“Casting”): How

• To “cast” a value v in one type to another
type, the following syntax is used

 (TargetType) v

• Examples:

traceln((String) age)

((Female) item).stateChart.isStateActive(Pregnant)

((int) age) + 1

Parameterized Types

• Sometimes a type (A) is defined in terms of another
type “(B)

– This allows the definition of A to take & give back
information specific to type B

• e.g. methods take an A as a “parameter”, or return a B, etc.

• Common example: Collections depending on the
type of their content

• We say that the type A is “parameterized by” type B

• We can describe such “Parameterized Types” using
Java “Generics”

– Syntax used: A

Examples of Parameterized Type (Generics)

• A resource pool depending on what resources
are included
(ResourcePool<MyResourceUnit>)

• An “array list” (like an extensible vector)
depending on the type of the elements
(ArrayList<Person>)

• Hypothetical: A Pair defined in terms of the
first and second element

– Pair< String, Double>

Example of a Parameterized Type

Enums: Why
• Often we desire in our models to encode

categorical information

• We can certainly encode such information
using integers (or shorts, etc.)

– e.g.

• Male=0, Female=1

• Province: NL=0,NB=1,PEI=2,QC=3,etc.

• Example using variables

int sex

int province

Problem: This is fragile

– We could easily mistake a value “0” as encoding
either Males or Newfoundland/Labrador

– e.g.

• Reversing order of parameters given to a method, or
entered into a file

• Assigning value for one to another, due to a poorly
named values

• e.g.

 sex=province

Enums in Java

• Enums let us

– Give names to such information

– Refer to the names in our code

– Convert the names (where necessary) into their
associated values

– Compare names

– Define operations on names

Simplest Examples

• enum Sex { Male, Female };

• enum Province { NL, NB, PEI, QC, ON, MB, SK,
AB, BC};

• Variables using enum:

 Sex sex

 Province province

• Causes error: sex=province

